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A comprehensive approach using hazard screening, demographic analysis, and a geographic
information system (GIS) for mapping is employed to address environmental equity issues in
Oregon. A media-specific chronic toxicity index [or chronic index (CI)] was used to compare
envirnmental chemical releases reported in the EPA's Toxic Chemical Release Inventory (TRI)
database. In 1992, 254 facilities reportedly released more than 40 million pounds of toxic chemi-
cals directly into the environment on-site or transferred them to sewage treatment plants or
other off-site facilities for disposal and recycling. For each reported on-site TRI chemical release,
a CI based on oral toxicity factors and total mass was calculated. CIs were aggregated on a
media-, facility-, and chemical-specific basis. Glycol ethers, nickel, trichloroethylene, chloroform,
and manganese were ranked as the top five chemicals released statewide based on total CI. In
contrast, based on total mass, methanol, nickel, ammonia, acetone, and toluene were identified
as the top five TRI chemicals released in Oregon. TRI facility rankings were related to the
demographics and household income of surrounding neighborhoods using bivariate GIS map-
ping and statistical analysis. TRI facilities were disproportionately located in racial and ethnic
minority neighborhoods. They were also located in areas with lower incomes compared to those
in the surrounding county. No relationship was observed between the hazard ranking of the TRI
facilities overall and socioeconomic characteistics of the community in which they were located.
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The purpose of this study was twofold: to
rank the chronic toxic potential of environ-
mental chemical releases reported in the
EPA Toxic Release Inventory (TRI) data-
base for Oregon and to apply these results
to demographic and socioeconomic data
obtained with a geographic information sys-
tem (GIS). This study addresses equity
issues relating to the proximity of house-
holds to individual and multiple TRI facili-
ties releasing toxic chemicals into the envi-
ronment. Many of these chemicals are asso-
ciated with a diverse and wide range of
potential adverse health outcomes.

In the first phase, a media-specific chron-
ic toxicity index, or chronic index (CI), was
used to rank TRI chemical releases. The TRI
database was selected because it is widely
available and provides comprehensive annual
data on hazardous environmental chemical
emissions (1). During the 1992 TRI report-
ing year, Oregon ranked thirty-third in the
nation based on the total pounds of TRI
chemicals released on-site (e.g., air, land, and
water) (2). The major manufacturers in
Oregon reporting on-site chemical releases
during this time period included pulp and
paper mills, smelters and foundries, produc-
ers of film and resin materials, transportation
equipment manufacturers, chemical manu-
facturers, and electronics industries.

The CI is a component of the Chemical
Indexing System developed by the EPA's
Region III Air, Radiation and Toxics
Division (3,4). This system utilizes the
EPA's TRI database and chronic oral toxic-
ity factors for both carcinogens and noncar-
cinogens to estimate and compare the rela-
tive hazards of TRI chemical releases. This
hazard screening tool was designed to
improve the current ranking scheme of
simply adding masses of different pollu-
tants to obtain a total mass for a specific
TRI facility or state (2). Ranking based on
mass alone can unfairly represent TRI facil-
ities and lead to faulty pollution prevention
decisions by emphasizing the volume of
chemical releases without regard for proper-
ties of the chemicals (i.e., toxicity or envi-
ronmental fate). Other investigators have
used various toxicity weighting approaches
to rank and compare environmental chemi-
cal releases (5-7). Although these studies
have merit, their approach to toxicity gen-
erally has been coarsely defined. The
threshold limit value (TLV) methodology
recently developed by Horvath et al. (8) is
noteworthy; however, TLVs are intended
for application in an occupational rather
than environmental setting and may not
fully protect all segments of the population
(9-11).

Risk assessment is a multistage process
that ultimately requires information on the
toxicity of a particular chemical and its effect
on human health, knowledge of the demo-
graphics and health status of the population
at risk of exposure, and the most accurate
information on measured or estimated expo-
sures (current and previous exposures if one
is interested in health effects with long laten-
cies after exposure) (12). The costs associated
with conducting comprehensive risk assess-
ment studies preclude that they be imple-
mented whenever there is an environmental
health problem. The CI only considers the
components of the risk assessment process
that describes hazard identification (13).
Therefore, the results of the CI are not
intended to describe population or individ-
ual risk. Instead, this approach is iterative
and serves as an initial screening tool to iden-
tify potential hazards and evaluate the need
for further action such as exposure assess-
ment or full risk assessment. The ranking of
TRI emissions using the CI combined with
knowledge about the demographics of the
communities at risk of exposure such as pop-
ulation density, race, ethnicity, socioeco-
nomic status, and age is an attempt to help
set priorities for future risk or public health
assessments, epidemiological studies, and
basic research on cellular mechanisms associ-
ated with environmental health problems.

During the past 13 years, federal, state,
and local government agencies, academic
researchers, and environmental groups have
reported that exposures to environmental pol-
lutants are inequitably distributed among the
U.S. population. Many studies have demon-
strated that environmental hazards including
hazardous waste sites, hazardous waste incin-
erators, industrial emissions, and agricultural
pesticide use are disproportionately located
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among racial and ethnic minority popula-
tions, including Black, Asian, Native
American, and Latino communities (14-18).
In several instances, inequities were apparent
regardless of the socioeconomic status of the
residents living in the affected community
(14). Perlin et al. (15) found that household
incomes actually were higher in some com-
munities with higher industrial emissions.
Previous studies have analyzed the number of
hazardous waste sites or the amount ofchem-
ical emissions within identified communities
but have not compared with the overall pop-
ulation the toxicity of the pollutants or the
extent of exposure within geographically
defined areas. Earlier studies addressing issues
of environmental equity generally used larger
geographic units of analysis such as block
groups, census tracts, or municipalities
(7,15-1. As recently noted by Glickman et
al. (19, local variations can be masked and
anomalies such as minority or low income
clusters obscured using these larger geograph-
ic boundaries. A unique aspect of the present
study is that block-level data (the smallest
available geographic census unit), including
racial, ethnic, and socioeconomic characteris-
tics such as housing value and estimated
household income, were analyzed within
0.7-2.0 miles of each TRI facility in relation
to the relative toxicity ofTRI chemical releas-
es. This appears to be the first study to com-
bine hazard screening, demographic analysis,
and GIS technology to address environmen-
tal equity issues surrounding TRI facilities.

Methods
Databases
TRI. The 1992 TRI database for Oregon
was extracted from a component file of the
National Library of Medicine's TOXNET
system and from the EPA. The TRI data-
base was originally established under
Section 313 of Title III of the Superfund
Amendments and Re-authorization Act
and is known as the Emergency Planning
and Community Right-to-Know Act
(EPCRA) of 1986 (1). EPCRA requires
manufacturing facilities that meet certain
thresholds to report their estimated releases
and transfers of toxic chemicals to the EPA.
Releases include unplanned spills and rou-
tine emissions of chemicals released directly
to the air and land, injected into land, dis-
charged to surface water, or transferred to
publicly owned treatment works common-
ly known as sewage treatment plants, or
other off-site locations for recycling and
waste disposal.

IRIS. The EPA's Integrated Risk
Information System (IRIS) database pro-
vides oral toxicity factors for most of the
EPCRA chemicals and is available through

the National Library of Medicine's
TOXNET system or from the EPA. IRIS
provides quantitative estimates of toxicity
for both carcinogens and noncarcinogens
derived using a consistent, established proce-
dure (20-22). Toxicological data for indi-
vidual chemicals in IRIS undergo extensive
peer review, and the resulting values are
widely accepted. Moreover, this database is
updated periodically, primarily to account
for new additions. As new information
becomes available in the literature, existing
chemical files are reassessed and any changes
are included in the monthly updates.

HEAST. The EPA's National Center for
Exposure Assessment in Cincinnati, Ohio,
prepares a list of toxicological data in the
form of Health Effects Assessment Summary
Tables (HEAST). These data undergo exten-
sive peer review and are updated annually.
The information in this database is consid-
ered provisional because the values do not
have the concurrence of all EPA program
offices. Each value is supported by an EPA
reference; however, the information has not
had enough review to be recognized as
agency consensus (23).

U.S. Bureau of Census. Data from the
1990 U.S. Bureau of Census were used to
aggregate and analyze demographics in
Oregon according to total population, race
(white; black; American Indian, Eskimo, or
Aleut; Asian or Pacific Islander, and other
races), ethnicity (Hispanic), and household
income. Census information for block level
data was extracted from 100% count data
in CD-ROM Summary Tape Files STF1A
and B, and block group level data used to
tabulate median income was obtained from
sampling data in STF3 tables (24).

Chronic Toxicity Algorithm
Individual CIs were calculated for each on-
site chemical release reported for Oregon
during 1992. The CI, as previously
described (3-4), is based on a combination
of TRI emission data and oral toxicity fac-
tors for each TRI chemical. A major
strength of this toxicity weighting approach
is that it allows direct comparison of car-
cinogenic and noncarcinogenic TRI chemi-
cals by adjusting both dose scales. It is
important to note that this adjustment is
not intended to imply biological significance
of the individual toxic effects but maintains
consistency with EPA policies regarding the
regulation of risk and hazard levels for car-
cinogens and noncarcinogens (4).

Because risk at low exposure levels cannot
be directly measured, mathematical models
are used to extrapolate animal or epidemio-
logical data obtained at high doses to project
the risk at very low doses. In the absence of
adequate information supporting other

model types, the EPA employs a conservative
approach by using the linearized multistage
model for low dose extrapolation (25). The
CI algorithm adjusts the scale for carcinogens
by calculating the dose at a risk level of 1 x
104 according to the one-hit dose-response
model shown in Equation 1. The one-hit
model is based on the concept that a tumor
can be induced after a single susceptible target
or receptor has been exposed to a single effec-
tive dose unit of a substance. Therefore, in
keeping with the screening objective of the
CI, this dose-response model provides a con-
servative estimate of the dose associated with
the reference risk. Using a reference risk level
of 1 x 104 is consistent with EPA policy for
carcinogens regulated under the National
Contingency Plan (NCP) and the Clean Air
Act Amendments of 1990 (26). Carcinogenic
TRI chemical dose scales were adjusted using
the following equation:

Risk= 1-eq*dIc (1)

where the risk level = 1 x 10-4 as reference
risk value, q*= cancer potency factor [CPF;
(milligrams per kilogram per day)-1], and
dc= carcinogenic dose (milligrams per day).

To account for the adequacy of the
database supporting the carcinogenicity
assessment, the EPA has derived weight-of-
evidence classifications (WOE) (274. These
WOE classifications of A, Bi, B2, C-B2,
and C are represented by mathematically
equivalent internals as described by Forman
(4), where A = 1.0; Bi = 0.84; B2 = 0.67;
C-B2 = 0.51; and C = 0.34. Finally, to
express all hazard doses in units equivalent
to the theoretical exposure dose units (mil-
ligrams per day), an average adult body
weight of 70 kg is used to adjust the kilo-
gram body weight factor.

Solving for d,. we have

d = ln (1-(1 x 10-4) x WOE* x BW*, (2)
-CPF

where WOE * = carcinogenic weight of evi-
dence and BW** = body weight.

For noncarcinogens, EPA policy under
the Superfund Program (the NCP) recom-
mends concentrations "to which the
human population, including sensitive sub-
groups, may be exposed without adverse
effect during a lifetime or part of a lifetime,
incorporating an adequate margin of safe-
ty" (28). Therefore, the CI algorithm cal-
culates the dose scale for noncarcinogens
(nc) using concentrations equivalent to a
hazard index of 1, which is equal to the
oral reference dose (RfD). The following
equation is used for noncarcinogenic TRI
chemical dose adjustments:
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Dosene (mg/day) = RfD (mg/kg/day)
x BW (3)

where RfD = oral reference dose = hazard
index= 1.0.

If the TRI chemical possessed both
noncarcinogenic and carcinogenic toxicity
factors, a total hazard dose was calculated
using the following equation:

Hazard DoseTr(mg/day)= (1) + (1). (4)

nc c

A theoretical exposure dose (milligrams
per day) is then calculated using the report-
ed total mass (pounds per year) released
on-site and various conversion factors, as
shown in the following equation:

Theoretical Exposure Dose (mg/day) =

mass (lbs/year) x 0.453 (kg/lb) x 1,000,000 mg/kg,
365 days/year (5)

where 1 lb = 0.453 kg chemical, 1 kg chem-
ical = 1 x 106 mg chemical, and 1 year =
365 days.

This theoretical exposure dose serves as
the numerator in the CI equation and is
divided by the previously calculated dosene
dosec (milligrams per day), or total hazard
dose. The resulting CI expresses relative haz-
ard and is unidess. CIs can be aggregated on
a media-, facility-, or chemical-specific basis.

CI = Theoretical Exposure Dose (mg/day)
Hazard Dose (mg/day). (6)

Geographic Information System
Mapping and Demographic Analysis
ARC/INFO (Environmental System
Research Institute, Redlands, CA) was ini-
tially used to build spatial databases and
mapping layers. Final database develop-
ment and mapping was done with
MapInfo 4.0 (MapInfo Corp., Troy, NY)
on a PowerMacintosh 8100/110 computer
(Apple Computer, Inc., Cupertino, CA).
The geographic boundary files were con-
structed from TIGER files (Bureau of the
Census, Washington, DC). Geographic
files included census-block and census-
block group boundaries and county
boundaries, as well as files of rivers, indi-
vidual streets, and road and rail networks.
The state of Oregon consists of 2,575
block groups and 61,075 census blocks
containing household census data.

Geographical coordinates (e.g., latitude
and longitude) contained in the TRI data-
base were used to locate TRI facilities.

These coordinates are provided by the
reporting facility on the TRI reporting
form (Form R). The coordinates presented
in our data set were cross-checked using
address- and zip code-matching programs.
Inaccuracies were identified in 30% of the
coordinates reported in the original TRI
data set. Personnel from those TRI facili-
ties with latitude or longitude coordinate
discrepancies were contacted and inter-
viewed, and the geographic coordinates in
our data set were corrected. The EPA was
notified of these inaccuracies.

Analysis of demographic data (race, eth-
nicity, estimated household income) was
conducted at the census-block level of
aggregation. Circles with radii of 0.71,
1.00, 1.41, 1.73, and 2.00 miles were
drawn around each TRI facility. The area
within 1.0 mile of a TRI site was equivalent
to the area between circles 2 and 3, cirdes 3
and 4, and circles 4 and 5. These radii were
chosen to standardize the area of each ring
to equal pi square miles. The area within
0.71 miles (cirde 1) was equal to the area
between circles 1 and 2. The 1990 census-
block data were aggregated from all census
blocks in which the centroid of the block
fell within the designated circle drawn
around the TRI site using a point-within-a-
polygon analysis. Block data within the
areas proximate to the sites were assigned to
pollutants released from one or multiple
TRI facilities. In alternate geographic analy-
sis, 1.0 mile circular radii were drawn
around the centroid of individual census
blocks rather than around each TRI facility,
and the CIs were aggregated from all TRI
facilities falling within 1.0 mile of each cen-
sus block centroid. All sites were located
within a mile of at least one block centroid.
This approach was desirable in urban and
industrial areas where there may be multi-
ple sources of environmental pollutants
dose to residential areas. Bivariate mapping
was used to identify numbers and distribu-
tion of minority populations and household
incomes and to demonstrate the relation-
ship between population demographics and
CI rank for each TRI facility.

Statistical Analysis
Statistical analysis was conducted using
Microsoft Excel (Microsoft, Redmond, WA)
and S-Plus (StatSci) computer software.
Nonparametric statistics (chi-square) were
used to analyze the racial and ethnic charac-
teristics within the buffer region relative to
those of the general population in the county
in which the facility was located, as well as the
entire state. Statistical analysis relying on a
paired t-test and the nonparametric Wilcoxon
test for paired data were used tO analyze esti-
mated household median income near TRI

sites relative to estimated median income for
county households. A nonparametric
Wilcoxon rank-sum test was used to analyze
the median chronic index of the TRI sites
with positive or negative income excesses
(county income minus site income) in areas
within 1.0 mile of each facility. Scatterplots
and analysis ofvariance (ANOVA) were used
to analyze the response of the CI or mass of
TRI chemicals released on-site with the per-
centage of racial and ethnic minorities living
within 1.0 mile ofa TRI site.

Estimate of Household Income
Although the 1990 Census provides data on
race and Hispanic status at the block level
(tabulated from 100% survey count), it does
not give data on a block level for household
income (24). It does, however, provide
block-level surrogates for income such as
housing values, rents, and population
crowding. For this project, estimates of
median household income on the block
level were computed by the Center for
Population Research and Census at Portland
State University, using other available block-
level demographic data and the block-group
income data contained on CD-ROM
STF3A tabulated from the census long-form
sample data (29). An initial multiple regres-
sion model was built using block-group data
to estimate block-group income. Surrogates
of income, induding housing values, rent,
owner/renter status, age of residents, and
crowding, were used to predict household
income for the 2,575 block groups contain-
ing households in Oregon. The regression
equation used to calculate square root of
household income was

10.510 + 0.190xl + 3.499x2 + 0.947x3
- 0.403x4+ 1.955x5- 208.280x6, (7)

where xi = square root of housing value
(0.007), x2 = square root of rent (0.156), x3 =
percent occupancy (0.041), x4 = percent age
>65 (0.050), x5= percent age <18 (0.063),
and x6 = number of persons per room
(7.36). The values in parentheses are the
standard errors for each coefficient. The
Pearson's I2 for this prediction was 0.70.
The results of this regression model were
then applied to the 61,075 census blocks
and the median income for blocks estimat-
ed. Blocks that contained data for all the
household variables included 84.5% of the
housing and 85.5% of the population.
Separate regression equations were used for
the blocks for which housing value and/or
rent information was missing when blocks
were wholly owner or renter occupied. The
Pearson's R2 values for these regressions
ranged from 0.70 to 0.90. The aggregated
estimated income for blocks within each
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census block group was summarized and
compared to the census value for block
group, and the block incomes were scaled
up or down to force the estimated aggregat-
ed block-level income to equal the reported
block-group income. The results of this
model generally differentiated lower versus
higher income blocks better in densely pop-
ulated urban areas and less well in rural areas
where housing value and rent information
was sparse. Estimates of block-level median
household income were aggregated, and the
average estimated median income for the
area in question, i.e. within 1.0 mile of a
TRI facility or within the entire county, was
determined by the following equation:

Average aggregated median household income =

X(No. of households
x estimated median household income)

l: (No. of households). (8)

Results
Distribution of TRIfacilities, releases, and
population density. During 1992, more than
40 million lbs of toxic chemicals were released
on-site or transferred off-site for recycling or
disposal by 254 different manufacturing facil-
ities in Oregon. Almost half this quantity was
released on-site direcdy into the environment
either through air emissions, land releases, or
discharges into surface water. An additional
17 million lbs (41% of total releases) were
transferred to off-site locations for recycling
and disposal, whereas the remaining 10% was
released to publicly owned treatment works.
Underground injection is an illegal waste dis-
posal practice in Oregon, and there were no
reported releases using this method of dispos-
al. The present study examined only on-site
chemical releases.

More than 80% of the TRI facilities are
located in a highly populous corridor in
western Oregon within the Willamette River
Basin (Fig. 1). This area comprises only 12%
of the state's area but contains most of the
urban centers and almost 70% of the state's
population.

Chronic toxicity ranking of TRI chemi-
cal releases. During 1992, 229 facilities list-
ed in Oregon's TRI reported on-site releas-
es of 81 different TRI chemicals or chemi-
cal classes into the air, water, or land. Table
1 lists the top 20 TRI chemicals released
on-site (air, water, or land) based on total
pounds. Methanol, nickel, ammonia, ace-
tone, and toluene were identified as the top
five TRI chemicals. Sixty-seven percent
(54/81) of the TRI chemicals released on-
site-constituting 85% of the total mass or
16.6 million lbs-had chronic oral toxicity
factors and could be ranked using the CI

Figure 1. Distribution of Toxic Chemical Release Inventory (TRI) sites in Oregon and total population density.
The total population of Oregon was 2.84 million according to the 1990 U.S. Census (24).

approach (data not shown). Chemical
releases could be ranked for a total of 196
TRI facilities using CIs based on the avail-
ability of oral toxicity factors. Most of the
remaining TRI chemicals without CI rank-
ings are acute toxicants (i.e., irritants, corro-
sives) such as ammonia, hydrochloric acid,
chlorine, and sulfuric acid. One important
exception is that 3,847 lbs of lead com-
pounds were released into the environment
(250 lbs into water and 3,597 lbs into air)
by 12 TRI facilities in 1992. Although lead
poses chronic health risks, there are no
chronic oral toxicity factors available for
this chemical in either IRIS or HEAST.
Instead lead hazards are calculated using a
biokinetic model that predicts blood lead
levels in children exposed to lead from dif-
ferent environmental sources, i.e., diet, air,
water, soil, and dust.

For those 54 TRI chemicals with oral
toxicity factors, there was a 625,000-fold
range in the total relative dose, which con-
siders both noncancer and cancer effects. As
shown in Table 2, arsenical compounds
(Class A carcinogens) were identified as the
most toxic TRI chemical released on-site,
whereas the chlorofluorocarbon Freon 113
was identified as the least toxic. It is impor-
tant to note, however, that the CI does not
take into account ecological or environmen-
tal health risks such as those associated with
chlorofluorocarbon-induced stratospheric
ozone depletion. Carcinogenic TRI chemi-
cals released on-site constituted 8.4% of the
total mass. Two Class A or known human
carcinogens were released, including 531 lbs
of arsenical compounds into water and

Table 1. Top 20 Toxic Chemical Release Inventory
(TRI) chemicals released on-site in Oregon in 1992
based on total mass and total chronic index

Total mass Total chronic index
Methanol Glycol ethers
Nickel Nickel and nickel

compounds
Ammoniaa Trichloroethylene
Acetone Chloroform
Toluene Manganese compounds
Methyl ethyl ketone Dichloromethane
Formaldehyde 2-Methoxyethanol
Xylene (mixed isomers) Acetone
Hydrochloric acid8 Hexachloroethane
Methyl isobutyl ketone Chromium and

chromium compounds
Trichloroethylene Arsenic compounds
1,1,1-Trichloroethane Methanol
Chloroform Methyl isobutyl ketone
Styrene Toluene
Dichloromethane 1,1,1-Trichloroethane
Freon 113 Formaldehyde
Manganese compounds Naphthalene
Glycol ethers Epichlorohydrin
Chlorinea Methyl ethyl ketone
Sulfuric acida Styrene
'TRI chemicals that did not have toxicity factors (oral reference
doses and cancer potency factors) available in IRIS or HEAST
databases.

1,384 lbs of benzene into the air. Of all
classes of carcinogens, the B2 or probable
human carcinogen chloroform was released
in the largest quantity (412,297 Ibs) by
both point and nonpoint air emissions.

Results of ranking individual TRI
chemicals based on total CI, which consid-
ers both toxicity and mass, are presented in
Table 1. Glycol ethers had the greatest
total CI of 3.5 x 109 because of the rela-
tively large quantity released into air
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(141,286 lbs) and water (59,400 Ibs) (data
not shown) and relatively high toxicity (rel-
ative dose = 0.07 mg/day). In contrast, gly-
col ethers were ranked eighteenth based
solely on total mass (Table 1). Nickel and
nickel compounds ranked second for all
on-site TRI releases using either method.
One facility, a nickel smelter, contributed
97% of the total CI for nickel-containing
slag. The industrial solvents trichloroethyl-
ene and chloroform ranked third and
fourth, respectively, based on total CI
while placing eleventh and thirteenth based
solely on total mass.

CIs for individual TRI chemicals were
aggregated on a media-specific basis, as
shown in Table 3. Eighty-five percent
(2,324,645 lbs) of all TRI chemicals released
onto land could be ranked using the CI
(data not shown). Following CI ranking,
nickel, manganese, chromium, arsenic, and
zinc compounds were identified as the top
five TRI chemicals released to land (Table
3). Nickel constituted 89% of the total mass
released and 68% of the total CI calculated
for the land category. With respect to air
releases, 83% of the total mass released by
point sources and 90% of the nonpoint air
emissions could be ranked using the CI
(data not shown). TRI chemicals released
into the air with the greatest CI were glycol
ethers, trichloroethylene, chloroform,
dichloromethane, and hexachloroethane
(Table 1). Only 38% of all surface-water
releases could be ranked using the CI
because the TRI chemical released into
water in the greatest amounts was the acute
irritant ammonia (303,355 lbs or >60% of
total mass), which has no chronic oral toxic-
ity factor. Glycol ethers, arsenic, chloroform,
pentachlorophenol, and methyl isobutyl
ketone had the largest total CIs for TRI
chemicals released into water (Table 3).

Table 4 lists the top 10 TRI facilities in
Oregon based on total CI for all on-site
releases. The nickel-smelting plant had the
greatest CI (1.79 x 109) following the
reported release of more than 2 million lbs
of slag-containing nickel onto the land.
Similarly, this facility also ranked first
based on total mass of a TRI chemical
released on-site in 1992 (data not shown).
Large air emissions of glycol ethers and
chloroform from a pulp and paper mill
resulted in the second place ranking of
Facility 2. In contrast, this paper mill
ranked sixth based on total mass. Other
facilities listed in Table 4 include wood and
fabricated metal product manufacturers,
steel foundries, and electronics industries.

Demographic analysis ofpopulations
residing near TRIfacilities. As reported in the
1990 U.S. Census (24), the racial demo-
graphics of Oregon are as follows: 92.76%

white; 1.62% black; 1.35% American Indian,
Aleut, or Eskimo; 2.44% Asian or Pacific

Islander; and 1.81% other races. The
Hispanic ethnic group makes up 3.96% of

Table 2. Top 20 TRI chemicals released on-site in Oregon in 1992 based on total relative dose

Chemical name

Arsenic compounds
Propylene oxide
Antimony and antimony compounds
Pentachlorophenol
Hexachloroethane
Tetrachloroethylene
2-Methoxyethanol
Glycol ethers
Ethyl acrylate
Epichlorohydrin
Benzene
Naphthalene
Trichloroethylene
Chlorophenols
Chromium and chromium compounds
Manganese and manganese compounds
Chloroform
Dichloromethane
2,4-Dichlorophenoxyacetic acid
Nickel and nickel compounds

WOEa RfDb
(mg/kg/day)

A 0.0003
B2 0
- 0.0004
B2 0.03
C 0.001

C/B2 0.01
- 0.001
- 0.001
B2 -
B2 0.002
A -

- 0.004
C/B2 -
- 0.005
- 0.005
- 0.005
B2 0.01
B2 0.06
- 0.01
- 0.02

CPFb
(mg/kg/day)-1

1.75
0.24

0.12
0.014
0.052

0.048
0.0099
0.029

0.011

0.0061
0.0075

Total relative dose
(mg/day)

0.003
0.019
0.028
0.038
0.050
0.066
0.070
0.070
0.098
0.108
0.241
0.280
0.344
0.350
0.350
0.350
0.367
0.544
0.700
1.400

Abbreviations: WOE, weight of evidence; RfD, oral reference dose; CPF, cancer potency factors; A, known human car-
cinogen with sufficient evidence from human epidemiological studies; B2, probable human carcinogen with sufficient
animal data but no human epidemiological evidence; C, possible human carcinogen with limited evidence in animals and
absence of evidence in humans.
alu.S. EPA's WOE classification for carcinogens as of May 1994.
bOral RfD and CPF obtained from either IRIS (20-22) or HEAST (231 databases.

Table 3. Top five Toxic Chemical Release Inventory (TRI) chemicals released on-site in Oregon in 1992
based on total chronic indices (Cl) by media

Chemical Media Amount released (Ibs) Total Cla
Nickel Land 2,077,422 1,841,630,277
Manganese and manganese compounds Land 232,880 825,789,746
Chromium and chromium compounds Land 82,181 205,112,725
Arsenic compounds Land 5 1,846,869
Zinc Land 11,216 662,863
Glycol ethers Airb 141,286 2,504,992,484
Trichloroethylene Airb 478,675 1,628,910,417
Chloroform Airb 405,919 1,510,306,165
Dichloromethane Airb 285,894 651,766,588
Hexachloroethane Airb 12,480 312,401,700
Glycol ethers Water 59,400 1,053,158,513
Arsenic compounds Water 506 186,903,131
Chloroform Water 6,236 21,049,670
Pentachlorophenol Water 527 17,293,958
Methyl isobutyl ketone Water 8,000 2,836,791
8lndividual Cls for each TRI chemical reported from all facilities are summed by the media into which they were released.
bPoint (stack) and nonpoint (fugitive) emissions.

Table 4. Ranking of 1992 Toxic Chemical Release Inventory (TRI) facilities in Oregon based on total chron-
ic index (Cl)

Facility number Trigger chemicalsa Total CIb
1 Nickel 1,792,668,159
2 Glycol ethers, chloroform 1,598,286,051
3 Glycol ethers, ethylbenzene 909,200,254
4 Manganese, chromium 886,239,094
5 Trichloroethylene 697,195,300
6 Chloroform, methyl ethyl ketone, methanol 494,788,650
7 Glycol ethers 407,788,650
8 Trichloroethylene, chromium 392,701,333
9 Chloroform 386,701,333
10 2- Methoxyethanol 374,101,761
8TRI chemical(s) that contributed most to the total on-site chronic index for each facility.
bindividual Cis for all reported chemical releases are summed by facility.
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the state's population. Although Oregon's
estimated population increased 4.4% from
1990 to 1992 when the TRI data were col-
lected for this study, complete data from the
1990 U.S. Census were used for this research.
Available demographics using U.S. Census
estimates of minority population data in 1992
were 1.71% black; 1.42% American Indian,
Aleut, or Eskimo; and 2.69% Asian or Pacific
Islander. The Hispanic group rose to 4.25%
of the state's population. Aggregating 1990
census-block level data around each TRI facil-
ity indicated that almost 25% (711,132 peo-
ple) of Oregon's total population lived within
1.0 mile and 50% of all Oregonians lived
within 2.0 miles ofa TRI facility.

Almost 90% of the population living
within 1.0 mile of a TRI site are white, but
racial and ethnic minorities are dispropor-
tionately located near these facilities. A com-
parison of the percentages of each racial and
ethnic group living close to a TRI facility
compared to percentage for each group in
the entire state demonstrates that blacks are
more than twice as likely as whites to live
within 1.0 mile of a TRI facility (Table 5).
This is not surprising, as more than 75% of
Oregon's black population lives in
Multnomah County, which also contains
25% of all TRI facilities. Almost 60% of
Oregon's black population lives within 1.0
miles of a TRI site compared to only 25%
of the general population; more than 86%
of the black population lives within a 2.0
mile radius of a TRI facility. The Asian and
Hispanic populations also have a greater
likelihood of living near a TRI site com-
pared to the white population, although the
differences are smaller.

The proportion of each racial and ethnic
minority group was compared at distinct
distances from a TRI site. Populations living
within 1.0 mile of a TRI facility (within cir-
cle 2) were compared to the same racial or

ethnic group living between 1.7 and 2.0
miles from a TRI site, (same total areas). As
shown in Table 5, as the total population
density decreased at greater distances from a
TRI site, the percentage of each minority
group decreased from 1.0 mile to 2.0 miles
as follows: 3.81% to 0.65% for blacks,
1.24% to 0.98% for Native Americans, 3.29
to 3.02% for Asians, and 5.20% to 3.42%
for Hispanics. These comparisons show per-
centage differences that are statistically sig-
nificant, but the difference for Native
American, Asian, or Pacific Islander and
other races is less than 1 percentage point.

The demographics of block residents
within 1.0 mile of each of the 254 facilities
were compared to those of the county in
which each facility was located (Table 6).
More than 20% ofthe TRI facilities (51 sites)
showed a statistically significant (p<0.001)
greater percentage of blacks living within 1.0
mile of a TRI facility compared to the per-
centage of blacks living within the county in
which the facilities were located. In addition,
23, 26, and 30% of the sites showed a greater
percentage of Native American, Asian or
Pacific Islander, and Hispanic populations,
respectively, compared to percentages for the
county's racial and ethnic characteristics. In
many cases, areas showed significant changes
in more than one racial minority population
and, consequently, the total number of sites
that showed significant increases in any
minority population was not additive.
Rather, there was a total of 120 TRI sites, or
47%, that showed significantly greater per-
centages of at least one racial minority group,
i.e., black, Native American, Asian, and other
races compared to the county's demograph-
ics. Because the Hispanic population is an
ethnic rather than a racial category and
includes people of all races, there is some
duplication if these groups are added to
obtain a total count.

Table 5. Cumulative population close to Toxic Chemical Release Inventory (TRI) sites

Distancea Native
Circle (miles) Populationb White Black Americanc Asiand Othere Hispanicf
0 0 0 0 0 0 0 0 0
1 0.70 412,868 365,654 15,459 5,456 13,209 13,090 24,824
2 1.00 71 1,132f 632,572 27,077 8,879 23,459 19,145 37,168

(25%) (24%) (59%) (22%) (34%) (35%) (33%)
3 1.41 1,062,938 954,451 36,695 12,587 34,247 24,948 50,418
4 1.73 1,288,468 1,165,939 38,800 14,704 41,271 27,754 57,414
5 2.00 1,462,581 1,329,379 39,939 16,420 46,526 30,317 63,367
Stateg 2,842,322 2,636,787 46,178 38,496 69,269 51,592 112,707
'The radii of circles 1-5 drawn around each TRI facility. The area within circle 1 equals the area between circles 1 and 2. The total area with-
in 1.0 mile (circle 21 is equivalent to the areas between circles 2 and 3, circles 3 and 4, and circles 4 and 5.
tT'otal population living within defined areas of the TRI site (including white; black; Native American; Asian or Pacific Islanders; Hispanics;
and other races. c

'Native American includes American Indian, Eskimo, and Aleut.
dAsian includes Asian and Pacific Islanders.
'Other includes remaining nonwhite races.
(lispanics are designated as an ethnic population, not a race, and are counted separately by the census. Therefore, a white Hispanic person
can be identified and counted as both white and Hispanic.
9Percentage of people living within 1.0 mile of a TRI facility divided by the state's total population within each ethnic or racial group.

Although there is a disproportionate
location of TRI facilities in minority neigh-
borhoods, scatterplots showed no correla-
tion of race or ethnicity associated with the
CI of a site or the amount ofTRI chemicals
reported released. ANOVA results in Tables
7 and 8 demonstrate that the median of CI
or total pounds ofchemicals released on-site
do not differ significantly among the quan-
tile groupings of percentages of racial or
ethnic minority populations.

Hazard ranking of the 1992 TRI sites
with CI ranging from 0 to 1.79 x 109 result-
ed in the top 10 sites having CIs that include

Table 6. Number of sites with statistically (p<0.001)
greater percentages of each minority population
living within 1.0 mile of a TRI facility when com-
pared to the percentages of minority populations
in the county in which sites are located

Number Percentage
of sites of sites Population compared
51 20 Black
59 23 Native Americana
52 20 Asian or Pacific Islander
76 30 Hispanicb
120 47 Either black, Native

American, Asian or
Pacific Islander, or other
nonwhite races

126 50 Any minority populationc
TRI, Toxic Chemical Release Inventory.
&Native American includes American Indian, Eskimo, or Aleut.
bPersons of Hispanic origin may be white or black.
cRacial and ethnic minority populations are defined as blacks;
Asian or Pacific Islanders; American Indian, Eskimo, or Aleuts not
of Hispanic origins; and Hispanics.

Table 7. Relationship of chronic index (Cl) or mass of
Toxic Chemical Release Inventory (TRI) chemicals
released on-site to percent minority populationa

Percent Median Median
Quantile minority" [log (CI)]b [log (Ibs released)]c

0-3.2 14.47 9.35
11 3.2-5.5 14.63 9.71
IlIl 5.5-11.2 14.59 8.81
IV 11.2-54.9 14.36 8.81

&Percent of total racial minority population including black;
American Indian, Eskimo, and Aleut Asian or Pacific Islander; and
other nonwhite races living within 1.0 mile of a TRI facility in
Oregon in 1992.
bStatistical variance F3192 = 0.014; p = 0.997.
cStatistical variance F3249 = 0.065; p = 0.582.

TableS Relabonship of chronic index (Cl) or mass of
Toxic Chemical Release Inventory (TRI) chemicals
released on-site to percent Hispanic population8

Percent
Quantile Hispanic I
1 0-2.2
11 2.2-2.9
Ill 2.9-4.8
IV 4.78-51.7

Median
[log (CI)]b
14.44
14.43
15.26
14.51

Median
[log (Ibs released)lc

9.17
9.47
9.09
9.59

'Percenttotal Hispanic population living within 1.0 mile of a TRI
facility in Oregon in 1992.
bStatistical variance F3,192= 0.014; p = 0.997.
cStatistical variance F3,25 = 0.077; p = 0.972.

Volume 106, Number 4, April 1998 * Environmental Health Perspectives222



Articles * Hazard screening and environmental equity analysis in Oregon

Table 9. Demographics within 1.0 mile of top 10 Toxic Chemical Release Inventory (TRI) facilities [rank based on total (CIl] compared with those of the county pop-
ulations in which facility is located

Asian or Pacific
Islandere

Sitef Countyg

0.0 0.7
0.0 1.3
7.0 4.7
7.0 4.7

10.5h 5.5h
1.5 0.8

10.5h 5.5h
3.1 4.7
0.0 0.9
0.7 1.4

Other

Sitef Countyg
0.0 0.7
0.0 0.8
2.4h 1.2h

2.1 1.2
1.4 0.9
0.7 0.5
1.4 0.9
0.7 1.2
0.0 0.9
1.5 3.5

Hispanice

Sitef Countyg

0.0 2.4
0.0 1.9
4.7 3.1
4.7 3.1
3.2 2.5
2.6h 0h
3.2 2.5
2.0 3.1
0.0 2.4
2.8 5.7

aSite numbering is based on pounds of chemicals released on-site.
bTotal Cds are computed for each TRI facility and include air, water, and land emissions for all chemicals reported.
lotal population living within 1.0 mile of the TRI site. Data are from U.S. Bureau of Census (24).
dNative American includes American Indian, Eskimo, and Aleut.
eHispanics are an ethnic population, not a race, and are counted separately by the census; therefore, a white Hispanic person can be identified and counted as both white and Hispanic.
Percent of race or ethnic population living within 1.0 mile of the TRI site; the percentage is based on count of race or ethnic population divided by total population living within 1.0 mile of site.
9Percent of race or ethnic population living within the county in which the TRI facility is located; the percentage is based on count of race or ethnic population in the entire county divided by the total population in the
same county.
hSites whose racial and ethnic populations within 1.0 mile of the facility are greater than twice that found in the county in which the facility is located.

nearly 80% of the total CI range (3.7 x

108_1.79 x 109). The top 10 TRI sites (only
4% of all sites) ranked on the basis of total
CI for all chemical releases are shown in
Table 9. Sites 1, 5, and 6 are ranked among

the top 10 by both total pounds released and
CI. Seven of these facilities are located in
populated urban areas and include three sites
in the city of Portland. The percentages of
racial and ethnic populations within 1.0 mile
of these 10 sites, when compared to those of
the neighborhoods within 1.0 mile of all 254
TRI sites (Table 5), are 1.5 times greater

among the Asian population and 0.5 times
greater among the Hispanic population. No
apparent differences were observed among

black or Native American populations when
the 10 top sites ranked by CI and all TRI
sites are compared.

Analysis ofpopulations residing near

multiple sites. GIS technology enables
analysis of census-block data in overlapping
designated regions around each TRI facili-
ty. Many of the facilities listed in Table 9
are close to several other TRI facilities;
therefore, neighboring populations are at

risk from exposure to chemical emissions
from multiple facilities. For example, Figure
2 demonstrates the variability in the per-

centage of blacks within each census block
and the overlapping of GIS-defined 1.0
mile radii boundaries around the individual
TRI facilities ranked by CI. The total
amount of chemicals released from Site 37
(Table 9) is 107,750 lbs, but a portion of
the population living within 1.0 mile of this
facility is also located within 1.0 mile of
other TRI sites. Therefore, the total report-
ed TRI chemical releases within 1.0 mile of
this neighborhood is actually 359,928 lbs.

Figure 2. Bivariate mapping of total on-site chronic toxicity index (Cl) and percent black population. This is
a map of north Portland, Oregon, showing census-block boundaries. Circle radii around each Toxic
Chemical Release Inventory (TRI) facility are 1 mile.

The CI for each facility can be aggregat-
ed from multiple sites in close proximity to

each other. Table 10 lists the top 10 total
aggregated on-site CIs from multiple TRI
facilities that are within 1.0 mile of one or

more census blocks. Each unique block list-
ed in this table is within 1.0 mile of one or

more different TRI sites. The same site
could be within 1.0 mile of more than one

census block. For example, as shown in
Table 10, the four TRI facilities that
include those with the second and third
highest CIs but are ranked 19 and 37 by

mass are both located within 1.0 mile of 28
census blocks in urban Portland and involve
a total population of 1,653. The largest
aggregated CI from multiple sites occurs

among facilities with high individual CIs
such as the sites listed in Table 9. The range
in toxicity for chemicals reported in the
Oregon TRI and therefore the range of on-
site CIs is so broad that the individual
indices calculated for the top 20 facilities
mask the aggregated indices from multiple
facilities with smaller individual indices.
Although there were some census blocks
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Site
numbera

1
6
37
19
26
5
63
27
10
67

Total
population

near
sitec

8
27

6,669
9,920
8,925
2,472
8,925
16,567

6
2,925

Cl x i000b

1,792,688
1,558,296
909,200
886,239
697,195
494,634
407,788
392,672
386,701
374,101

White

Site' Countyg
100 96.9
100 96.4
85.2 87.0
76.5 87.0
85.5 92.0
95.8 97.3
85.5 92.0
94.7 87.0
100 96.9
96.2 93.35

Black

Sitef Countyg
0.0 0.2
0.0 0.3
6.5 6.0

11.8h 6,0h
1.7 0.9
0.2 0.1
1.7 0.9
0.7 6.0
0.0 0.2
0.2 0.3

Native
Americand

Sitef Countyg
0.0 1.6
0.0 1.1
2.7h 1.2h
2.6h 1.2h
0.9 0.8
1.8 1.4
0.9 0.8
0.7 1.2
0.0 1.2
1.3 1.5

-
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Table 10. Areas with highest aggregated total chronic index (Cl)

No. census Total No. TRI Percent minority
blocks populationa Total Cib sitesc populationd

28 1,653 1,795,439,348 4 20
2 8 1,792,668,159 1 0
3 27 1,598,286,051 1 0

101 6,903 1,105,144,828 3 15
20 1,412 1,104,983,950 2 15
26 1,731 9.1-9.2 x 108 4 16
93 3,285 9.0-9.1 x 108 3 12
167 8,267 886,239,094 1 24

1 2 623,492,097 6 0
51 2,455 494,634,769 1 4
133 6,889 4.0-4.9 x 108 6 6

TRI, Toxic Chemical Release Inventory.
'Total population living in selected census blocks (1990 U.S. Census block level data) within 1.0 mile of TRI site(s) with same total aggregated
Cl.
bSum of total on-site chronic indices for all TRI facilities within 1.0 mile of census blocks.
CNumber of TRI sites within 1.0 mile of census block.
dPercent minority population including black; Asian or Pacific Islander; American Indian, Eskimo, or Aleut; and other nonwhite races.

with as many as nine TRI facilities located
within 1.0 mile of a particular block cen-
troid, they did not contain TRI facilities
with large enough individual CIs to form a
large total aggregated CI. Most of the cen-
sus blocks induded in Table 10 are located
in highly dense urban areas. The percentage
of racial and ethnic minorities within some
of these individual census blocks is more
than three times the percentage found with-
in the counties containing these industrial
sites. However, when these blocks are
aggregated into larger units, such as areas
within 0.7-2 miles around individual sites
as described in Table 5, the individual
blocks with higher proportions of minori-
ties are partially masked.

Results of estimated income analysis.
Statistical analysis using a paired t-test
revealed that estimated block median
household income for counties are substan-
tially greater than those for areas close
(within 1.0 mile) to TRI sites (t253= 5.55;
p<0.001). The average estimated median
household income for counties that contain
TRI sites is approximately $2,666 greater
than that for sites within 1.0 mile of a TRI
facility (95% confidence interval,
1,720-3,610). These results did not change
when inference was restricted to number of
households .10 or for sites not ranked
with a CI. Although the estimated income
was greater in the county containing the
TRI site compared to those of the near-site
areas, the average estimated median house-
hold income of the 27 counties in Oregon
containing TRI sites was $26,432 com-
pared to only $22,997 for the nine more
rural counties with no TRI sites. These
results are consistent with national data
showing that rural counties have lower
median household incomes than urban
counties (15). Scatterplots of income or

differences in income (county minus site)
compared to CIs of the TRI facility do not
suggest any relationship between the two
variates. Nonparametric Wilcoxon tests
demonstrate that there is no significant dif-
ference (p = 0.702; z = 0.388) in the medi-
an CI for the TRI facility and areas (within
1.0 mile of the site) with positive or nega-
tive differences in income and the median
CI for the county in which the facilities are
located. Correlation analysis showed no
relationship between total amount (mass)
of TRI chemicals released on-site and
median income in areas within 1.0 mile of
the site (r = 0.044; p = 0.496).

Discussion
We have described a comprehensive approach
using hazard screening, demographic analysis,
and GIS mapping to address environmental
equity issues in Oregon. In the first phase of
the study, environmental chemical releases
reported to the EPA 1992 TRI database were
ranked using a chronic toxicity index. The
EPA 1992 TRI database was selected because
it provides one of the most consistent and
comprehensive databases of industry-reported
annual chemical releases to the environment.
This environmental information resource was
designed to encourage pollution prevention
and waste reduction by increasing public
access to and knowledge of environmental
chemical releases (2). The TRI database has
several limitations for environmental health
research (8,19,30). First, only industries das-
sified under the Department of Commerce's
Standard Industrial Classification codes
2000-3999 (31) are required to report releas-
es under EPCRA. An additional list of seven
new industrial categories will be added in
1998. Second, a limited list of 370 chemicals
and chemical classes was required to be
reported during the 1992 TRI reporting year;

an additional 286 chemicals were added to
the TRI list in 1996 (32). This list of 656
chemicals represents only a small percentage
of the 60,000 chemicals currently in commer-
cial use (33). Third, the EPCRA reporting
thresholds further limit the number and type
of facilities required to report to the TRI data-
base; these thresholds indude companies that
manufacture or process quantities greater than
25,000 lbs of chemicals per year, use quanti-
ties greater than 10,000 lbs/year, and/or have
10 or more employees. Therefore, companies
(i.e., solvent-recovery services, dry cleaners,
auto body shops) that may release substantial
quantities of chemicals into the local environ-
ment are not required to report chemical
emissions to the TRI database. This study
uses TRI data from 1992 and demographic
data collected in the 1990 Census. Between
1990 and 1992, there could have been signifi-
cant individual annual changes in the TRI in
both the list of companies submitting forms
and the amounts of chemicals reportedly
released. For example, the facility ranked
fourth by CI in 1992 did not report to the
1990 TRI database, which would result in
changes in aggregated demographic data
around sites of interest. A major limitation of
the TRI database is reliance on best profes-
sional estimates rather than measured releases.
The EPA conducts only periodic inspections
of facilities required to report under EPCRA
These enforcement efforts are designed to
improve and maintain the accuracy and com-
pleteness of the database, but they are limited
in scope. Other components of the TRI data-
base that must be verified and often corrected
are the longitudinal and latitudinal coordi-
nates of each TRI facility. After cross-check-
ing using an address- and zip code-matching
program, inaccuracies were identified in 30%
of the coordinates reported in the original
TRI data set for Oregon.

Hazard screening methods other than
the CI have been used to rank environmen-
tal chemical releases (5-8,30). Earlier stud-
ies by O'Bryan and Ross (5) used 11 sepa-
rate scoring parameters to rank environ-
mental chemical releases, 6 of which per-
tain to chemical toxicity; the remaining 5
parameters were related to environmental
fate. Welch and Ross's (6) scoring system
combines environmental release and distri-
bution potential with information pertain-
ing to each chemical's mobility and persis-
tence in air, water, and soil. In another
study, Stockwell et al. (7) applied a 10-
point scale using seven criteria to evaluate
potential adverse human health effects
(e.g., carcinogenicity, heritable genetic
mutation, reproductive toxicity, etc.) and
three indicators of potential adverse ecolog-
ical effects (environmental toxicity, persis-
tence, and bioaccumulation).
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The CI method offers a refinement over
existing toxicity-weighting approaches. First,
it gives full priority to protecting public
health, induding potential high-risk groups,
by defining the toxicity of a TRI chemical
according to its adverse critical health effect.
The adverse critical health effect is deter-
mined by extensive peer review of both
human epidemiology studies and experimen-
tal data. A noncarcinogenic reference dose
below which the effect is not likely to occur
is then derived for each TRI chemical
(20-22). Also, cancer potency factors are
conservatively designed to protect public
health and to apply to all population sectors.
In contrast, Horvath et al. (8) recently pro-
posed using ThVs to estimate relative hazard
and to rank chemical releases by major
chemical companies across the United States.
Although this method is noteworthy, TLVs
are intended for occupational rather than
environmental settings and generally apply
only to healthy worker populations (9-11).
A second strength of the CI approach is that
it allows standard comparison of carcino-
genic and noncarcinogenic chemicals accord-
ing to their relative dosages and results in a
more refined comparison of TRI releases in
terms of their relative toxicities.

Hazard-screening methodologies such as
the CI are often limited by the availability of
toxicity data for specific TRI chemicals. In
the present study, 67% of all TRI chemicals
(85% of the total mass) had oral toxicity fac-
tors available and thus could be ranked
using the CI approach. The CI relies on oral
toxicity factors because of a lack of availabili-
ty of inhalation reference doses for TRI
chemicals. Inhalation reference concentra-
tions (RfCs) would be more appropriate for
ranking TRI air releases; however, less than
50 chemicals have RfCs. Recent preliminary
evidence suggests that using either inhala-
tion or oral toxicity factors does not signifi-
cantly change the final rank (D.L. Forman,
personal communication). On a media-spe-
cific basis, 90% of all stack and 83% of all
fugitive air releases could be ranked. This is
important because 80% of the total mass of
TRI chemicals was released into the air. In
contrast, Horvath et al. (8) could only rank
59% of TRI chemicals or chemical classes
constituting 78% by mass using the
Carnegie-Mellon University-Equivalent
Toxicity method. Another common prob-
lem to all toxicity-weighting models is that
TRI reporting is not specific for chemicals
with multiple valence states (e.g., Cr+6 and
Cr+3). To be conservative, the CI assigns
metals with different valences the more toxic
oral toxicity factor; this may generate a
result that overemphasizes the actual hazard.

A limitation of the CI approach is that
it only considers the hazard identification

step in the risk assessment process (13).
Recently, Jia and Di Guardo (30) described
a four-stage model designed to characterize
more fully the toxicity, persistence, and
environmental fate of TRI chemical releas-
es. Although this model is sophisticated, it
relies heavily on physical and chemical
properties to estimate environmental parti-
tioning and potential for exposure. As the
authors note, consensus is needed on the
scientific accuracy of these factors before
wide-scale application of this approach to
environmental health research (30). A sec-
ond limitation of the CI is that it only con-
siders chronic toxicity and does not address
acute toxic effects. Induding acute toxicity
ranking would help identify facilities that
pose the greatest risks following industrial
accidents. Recently the the EPA Region III
Air, Radiation and Toxics Division has
developed a multicomponent chemical-
indexing approach that includes acute toxi-
city as well as environmental fate of TRI
chemical releases. In addition, the CI
approach has been recently modified so
that chemicals that may pose chronic risks
but do not have oral toxicity factors may be
classified as residual releases and be includ-
ed in a combined index (34). This refine-
ment enables 100% of the mass reported to
the TRI to be analyzed. Another limitation
to this approach is that the CI considers
only adults because toxicity values (RfD
and CPF) are based primarily on adult ani-
mal experiments and human epidemiologi-
cal studies ofworker populations. The EPA
is currently addressing this issue by identi-
fying a group of chemicals that may be
more toxic to children. To account specifi-
cally for children, one must incorporate
appropriate child-specific exposure parame-
ters. For example, the total CI for each
TRI chemical release may be larger for chil-
dren because of their lower body weights.

The current CI approach provides a rea-
sonable basis for identifying and screening
potential hazards and is a marked improve-
ment on the past practice of simply adding
up total mass of TRI releases for individual
facilities or an entire state. Moreover,
because a CI value is calculated for each
chemical release, individual CIs may be
aggregated by chemical, environmental
media, facility, or industrial sector. Results
of CI ranking may be used to assist in tar-
geting scarce resources within a state for
enforcement targeting and pollution preven-
tion activities at the local, regional, or state
level. For example, glycol ethers were identi-
fied as the top TRI chemical released on-site
in 1992 using the CI approach; in contrast,
methanol was ranked as the top TRI chemi-
cal based on total mass reportedly released.
Therefore, Oregon pollution prevention

activities may focus more on reducing total
glycol ethers emissions than methanol.
However, it is important to keep in mind
that the results of this ranking are limited by
the scope of the TRI chemical list. Pollution
prevention priorities would vary if all chemi-
cal emissions were considered in the hazard
screening process, e.g., those from hazardous
waste sites or hazardous air pollutants not
currently listed under EPCRA.

Results of this study demonstrate that
industrial emissions from manufacturing
facilities reported in the 1992 TRI database
for Oregon are disproportionately found in
communities with higher percentages of
minority populations and lower average
incomes than the counties overall. Using
block-level data from the 1990 U.S. Bureau
of the Census for socioeconomic character-
istics is a unique aspect of this study.
Previous studies (7,15-17) generally used
for analysis larger geographic units such as
block groups, census tracts, municipalities,
counties, and states. Relying on demo-
graphic data from these larger geographic
units can mask local variations and obscure
various anomalies such as minority or low
income clusters. In rural areas, block-group
and tract data can apply to areas much larg-
er than actual areas of potential contamina-
tion from an industrial site. GIS allows
investigators to define distances from a
given point (i.e., industrial point source) or
polygon (i.e., waste site, plume, etc.) that
are most appropriate for particular studies
and not to depend on predefined geograph-
ic boundaries and spatial units (i.e., census-
tract areas). A limitation of this geographic
technology, however, involves assuming
homogeneity across census blocks when
aggregating socioeconomic data from cen-
sus-defined areas that have been split by a
GIS-created boundary, such as a circular
radius drawn around a point emission.

Results of past studies indicate that TRI
facilities may be disproportionately located
among low income groups with predomi-
nantly high minority populations (14-17).
Zimmerman (17) found a disproportionate
designation of National Priority List
Superfund dumpsites in poorer communities
with higher percentages of minorities; how-
ever, this trend appeared to be reversing
itself. Although the population of Oregon is
predominantly white, the methods presented
in this paper for hazard ranking of industrial
sites and statistical analyses of demographic
data proximate to sites are applicable to other
states with higher proportions of racial and
ethnic minorities; Nor only do the statistical
tests used here account for comparisons of
percentages of large and small groups, but
other studies involving broader areas such as
the entire United States include aggregating
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data from larger geographic areas, which may
mask smaller important regional variations.
Although most people living within 1.0 mile
of a TRI site in Oregon are white-about
90% versus only 4, 1, 3, and 5% for blacks,
Native Americans, Asians or Pacific
Islanders, and Hispanics, respectively-racial
and ethnic minorities are disproportionately
located close to the industrial facilities.
Almost 60% of blacks, 34% of Asians or
Pacific Islanders, and 33% of Hispanics live
within 1.0 mile of a TRI facility in Oregon
compared to only 24% of the white popula-
tion. n addition, estimates of median house-
hold incomes in counties containing TRI
sites are substantially larger than those in
areas dose to the sites.

Previous studies have reported that
minority groups tend to live in counties not
only with more TRI facilities but also with
higher industrial emissions (pounds per year)
than the counties with high proportions of
whites (15). The current study demonstrates
that neither the total pounds released nor the
hazard ranking of TRI facilities based on
chronic toxicity factors for both cancer and
noncancer effects is associated with racial,
ethnic, or income census data. Importantly,
analysis of near-site demographic data sug-
gests there is no relationship between the CI
of the facility and socioeconomic characteris-
tics.

Comparative toxicity ranking together
with demographic analysis can identify com-
munities with potentially greater risks of
exposure to hazardous chemicals. Future
studies may involve dispersion modeling
and environmental fate of TRI chemicals to
obtain more accurate estimates of exposure.
Using the GIS enables researchers to build
multiple layers of environmental, health-
related, and socioeconomic data that con-
tain geographic variables for locations. This
integration of hazard screening, demograph-
ic analysis, and computerized mapping
should serve as a model for the assessment of
environmental equity issues at the local,
state, or federal level. It has been recom-
mended that suspected hazards be evaluated
more rigorously by combining this method
with available methods for exposure and risk
assessment (35). This approach may assist in

identifying communities that may warrant
environmental monitoring to assess whether
exposure or health hazards actually exist.
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